The Programmabl e Brick Handbook

Epistemology and Learning Group
MIT Media Laboratory*

May 6, 1997

The Programmable Brick is a hand-held, battery-powered computer that can
receive inputs from electronic sensors (including touch, light, and sound sensors)
and operate LEGO motors. The “Brick” is designed for a variety of educa
tional robotics uses, including mobile robot projects, data-taking applications, and
“ubiquitous computing” applications (projects that embed computersin the world
around us).

This document explains how to use the Programmable Brick. Included is an
overview of the Brick, an introduction to common sensors, and a programming
reference.

The Programmable Brick isthe result of nearly a decade of work on hand-held
children’s computers done at the Epistemology and Learning Group at the MIT
Media Laboratory, under the guidance of Seymour Papert. The Programmable
Brick work builds on Papert’s pioneering work with the Logo computer language,
and subsequent work with the computer-controlled LEGO/Logo system.

The primary development team on the Programmable Brick project has in-
cluded Fred Martin, Seymour Papert, Mitchel Resnick, Randy Sargent, and Brian
Silverman. This document discusses a version of the Programmable Brick hard-
ware that was designed mostly by Fred Martin, using a software system that was
designed mostly by Brian Silverman. This manual was written by Fred Martin.

This manual is specific to the Programmable Brick Model 120 —see
Figure 1 on page 11— unning the September 26, 1995 release of Brick
Logo software.

*20 Ames Street Room E15-315, Cambridge, MA 02139. To reach the current members of the
Programmabl e Brick design team, send e-mail to pbr i ck- desi gn@redi a. m t . edu.

1

Overview

This manual is organized as severa sections and a number of appendices. The
mai n sections present the ideas and information you need to use the Programmable
Brick:

e Section 1, Introduction, presents the concept of the Programmable Brick
and some motivations behind its creation.

e Section 2, The Programmable Brick, discusses the Brick itself and explains
its commonly used features.

e Section 3, Motors, explains the Brick Logo motor primitives.

e Section 4, Sensors, explains the uses of common electronic sensors and
associated Brick Logo primitives.

The appendices provide additional helpful information:

e Appendix A, Getting Started, explains how to set up the Brick materials
(both hardware and software).

e Appendix B, MS-DOSComputer Information, presents information specific
to IBM-compatible personal computers.

¢ Appendix C, Battery Maintenance, explains how to take care of the Brick’s
internal rechargeable battery.

e Appendix D, The Brick Interface/Charger Unit, provides reference infor-
mation about the functioning of this device.

e Appendix E, Brick Logo Quick Reference, isahandy synopsis of Brick Logo
commands.

e Appendix F, Error Messages, explains common errors and their solutions.

e Appendix G, Known Bugs, lists known problems with the current Brick
hardware and software.

e Appendix H, \ersion History, discusses update changes from previous ver-
sions of Brick hardware and software.

2

e Appendix |, Bibliography, presents a sampling of worksthat influenced the
Programmable Brick project.

e Appendix J, Suppliers, lists suppliersfor materialsuseful for Programmable
Brick projects.

Contents

1

Introduction
11 HistoryoftheBrick
12 UsingtheBrick

The Programmable Brick

21 MotorOutputs

22 Sensorlnputs oL
221 LEGOSensorinputs.
222 Mini-PlugSensors oo

23 UserlnputandOutput
231 PowerSwitch
232 BrickDisplayo
233 ButtonsandKnob 0oL
234 StatusLEDso oo

24 InfraredControl

2.5 Computer/ChargeConnector

Motors

3.1 Turning MotorsOnandOff
3.2 SeectingMultipleMotorso oo
3.3 Timed Motor Commands
34 Changing Motor Direction
3.5 SettingMotor PowerLevel

Sensors

41 TheLEGO TouchSensor

42 ContinuouSSENSOrS v e
421 ThelLEGO ReflectanceSensor
422 TheLEGO TemperatureSensor
423 TheBendSensor.
424 ThePhotocell LightSensor
425 TheSoundSensor

43 TheLEGO AngleSensor

44 TiIMINGSENSOr v vt

45 BatterylLevel Sensor

Getting Started

A.l SettinguptheBrick Hardware
A.2 IngallingtheBrick Software.
A.3 RunningtheBrick Software
A.4 Reloading the Brick Operating Program

MS-DOS Computer Information

Battery Maintenance

Cl ChagingModes
C.2 BatteryLife
C3 BateylLevel Readout

The Brick Interface/Charger Unit

D.1 Connectors.
D.2 StatusLEDs
D.3 ChargeRateSwitch
D.4 Adapter Specificationso

Brick Logo Quick Reference
E1l Motors
E2 Sensors.
E.3 Control Structures Lo
E4 Input/Output
E41 LCDDisplay
E42 Input.
E43 Sound
E.44 Infrared Communication.
E45 Serdline.
E46 SpeechOutput
E5 Multi-Tasking o
ES51 LaunchingProcesses.
E52 StoppingProcesses
E.6 DataRecordingandPlayback
E.7 Procedures, Variables,andComments
E.71 ProcedureDefinition.
E.72 Procedurelnputs. L.

28
28
32
33
36

38

E73 Locd Variadbles 52

E74 Globa Variables L. 52
E.75 ProcedureReturnValues. 53
E76 CodeComments. 53
E.8 NumericOperations 54
E.8.1 ArithmeticOperators 54
E.8.2 Boolean and BitwiseOperators 54
E83 Precedence. 55
E84 RandomNumbers 55
E9 FileManagement 55
Error Messages 56
Known Bugs 58
Gl Hadware 58
G.2 Software 58
Version History 59
H1 Hardware 59
H2 Software 60
Bibliography 61
Suppliers 62

List of Figures

O©CoOoO~NOOUILA,WNPE

=
o

Photograph of the ProgrammableBrick 11
TheNineVolt LEGOMotor 16
LEGO Motorand Motor Cable 17
TheLEGO TouchSensor 21
The LEGO ReflectanceSensor 23
The Brick Interface/Charger Unit 28
Programmable Brick, Interface/Charger, and Host Macintosh . . . 30
Macintosh ModemCable 31
Brick Logo Screen with Annotations. 33
Brick Logo TestProgram 35

1 Introduction

This introduction presents a (very) brief history of the research leading to the
development of the Programmable Brick, and aquick scenarioillustrating its use.

1.1 History of the Brick

The Programmable Brick is the result of more than twenty-five years of work
in developing computer-rich, constructionist activities for children, which began
with the creation of the Logo programming language in the late 1960's under the
guidance of Seymour Papert.

The early work was done at MIT’s Artificial Intelligence Laboratory. Hand-
built mobilerobots(called “floor turtles’) were cabl ed to big mainframe computers,
and children wrote Logo programsto control how these turtles moved about. The
turtles carried marker pens, so childrens' Logo programs would cause the turtles
to make drawings on paper taped down to the floor.

By the late 1970's, these turtles moved off of the floor and onto the computer
screen. The“screenturtle,” aniconicimageof aturtleonthecomputer display, was
afast, cheap, and effective alternative to the electromechanical floor turtles. With
the explosion of microcomputersin the 1980's, many children were introduced to
computing by writing Logo programsfor screen turtles.

In the mid 1980’s, a collaboration began between Papert’s research group,
which had moved totheMIT MediaL aboratory, and the LEGO Group of Denmark,
makers of the ubiquitous children’s toy. The result was a system that allowed
childen’s Logo programs to control the movement of their LEGO constructions,
which could be equipped with little electric motors and sensors. In a sense,
Logo was returning to its roots of being interconnected with physical things-in-
the-world, but with an important new dimension. The “turtle” in a LEGO/Logo
proj ect becameanything that achild could build with LEGO parts. Thecommercial
LEGO/Logo system, now in its second generation, is in use in thousands of
elementary and middle schools in the United States.*

The Programmabl e Brick extendsthe LEGO/L ogo environment, allowing chil-
dren to create robotic devices that are portable and/or mobile. Children are using
the Programmable Brick to build robot vehicles, perform remote data-taking ex-

1The commercia version of the LEGO/Logo materials, marketed by LEGO Dacta, is known
by its product name LEGO Control Lab.

periments, and create computationally active environments, in the spirit of the
recent “ubiquitous computing” work of Xerox PARC.

1.2 Using the Brick

Working with the Programmable Brick is alot like building with the commercial
LEGO/Logo systems. During project development, the Brick may be hooked up
to adesktop computer, and users can control their LEGO motorsdirectly by typing
commands on the keyboard. Logo programsmay be written, downloaded, and run
from the keyboard.

The difference is that because users programs are actually downloaded to
the Brick, it may be detached from the desktop computer (the link is a simple
telephone-wire-style serial connection), and any programs that have been down-
loaded can be executed without the benefit of the desktop system. The Brick has
its own little display screen as well as a knob and two buttons, so that different
programs can be started and stopped, all when the Brick is away from the desktop
host machine.

Since the Brick is small, portable, and battery-powered, a new strain of
LEGO/Logo projects are possible, including mobile robots that don't have to
carry an awkward tether, and remote data-collection projects can be set up for an
extended period of time.

2 The Programmable Brick

This section introduces the Programmable Brick, explaining its various inputs,
outputs, and connectors. Appendix A of this guide demonstrates how to hook the
Brick up to adesktop computer and operate the Brick Logo software system.

Figure 1 is aphotograph of the Programmable Brick, showing the connectors,
buttons, and other interface objects on the Brick. In the discussion that follows,
please refer back to this diagram to relate the features being presented.

2.1 Motor Outputs

The Programmable Brick can control four motors, driving them in either direction
and at user-controllablelevels of power. Motors are connected to the Brick using
2x 2 sguare LEGO connectors, the LEGO 9 volt connector system. To useamotor,
smply plug it into a Brick motor outpui.

Thefour motor connectorsarelocated along thelower edge of the Brick. Motor
A isontheleft, and Motor D is on the right. Above each motor connector, a pair
of LEDs (light emitting diodes) indicatesthe motor output’s state. The green LED
indicates the motor output is on, turning amotor in onedirection, and thered LED
indicates it is turning in the other direction. Depending on the orientation of the
motor connector, a motor may run clockwise or counterclockwise when initially
turned on.

The Programmable Brick was designed to be used with 9 volt LEGO motors.
Other hobby motors, even small ones, may overload the Brick’s circuitry. This
is because the 9v LEGO motors were specially designed to draw relatively small
amounts of electrical current, while the average toy motor isnot designed thisway.

The motor outputs may also be used to control 9v LEGO lamps and beepers, as
well asflashlight bulbs. When connecting flashlight bulbs, make sure to use bulbs
rated around 7.5 volts (bulbs rated for lower voltages may burn out, while bulbs
rated for higher voltages will be too dim). Radio Shack part number 272-1133 is
anideal bulb.

2.2 Sensor Inputs

The Programmable Brick can support up to six sensors at once. There are three
each of two different types of sensor connectors. Sensors A through C are for 9v

10

}ouga|qewuwribold ay) Jo ydeiboloyd T ainbi4

T

Sensor Inputs

RN

On/Off
Switch

T

Computer/Charge
Jack

—Tl—

Start Button

~~—

™
Stop Button

LN

Motor Outputs

.. L)% 3|.|I ‘iv.li::,'-

Operation

/ LED

Low Battery

LED

Screen
Choice
Knob

LEGO sensors (which include touch sensors, reflected light sensors, and rotation
sensors), and sensors D through F are for custom-made sensors.

Following is a brief description of the sensors; these sensors are described in
detail in Section 4, Sensors.

2.2.1 LEGO Sensor Inputs

Connectorsfor sensorsA, B, and C, | ocated al ong thetop edge of the Programmable
Brick, can be used to connect any of the 9v LEGO sensors used with the LEGO
Control Lab product.

Touch sensor. The touch sensor is a switch that can detect contact (when the
switch nub is pressed in).

Reflected light sensor. The reflectance sensor has a light emitter and a light
detecter. It measures how much light from its own light source is reflected
back into its light detector.

Angle sensor. Theanglesensor keepstrack of therotary movementsof aLEGO
axle that is mounted through the sensor.

Temperature probe. The temperature sensor reports a value that corresponds
to the temperature at the tip of the sensor.

Each of the LEGO sensors has a square 2x2 LEGO connector just like the
motor cables. To attach the sensor, simply plug the connector onto the metal studs
on the Programmable Brick. Orientation is not important.

Note to users of LEGO Control Lab: In the LEGO Control Lab
product, a distinction is made between “ active” sensors (which have
ablueplug) and“ passive” sensors(which haveayellowplug). Onthe
Control Lab interface, there are separate pads for connecting active
and passive sensors.

The Programmable Brick does not make such a distinction. Either
type of sensor can plug into any of the three LEGO-compatible sensor
inputs.

12

2.2.2 Mini-Plug Sensors

In addition to the three LEGO-compatible sensor inputs, there are three sensor
inputs designed for custom-made sensors. These sensors use the “stereo mini-
plug” connector (the type of connector commonly found on Sony Walkman-style
headphones).

Several custom-made sensors are available to work with the Programmable
Brick. These are described in Section 4.

Sound sensor. The sound sensor can be used to detect loud noises.

Bend sensor. The bend sensor islike atouch sensor, except that it can detect a
range of contact forces, not smply on and off.

Ambient light sensor. The ambient light sensor is similar to the reflectance
sensor in that it detects light, but it does not have its own light source, and
is better for detecting room (i.e., ambient) lighting.

2.3 User Input and Output

There are two buttons, a switch, a knob, and a display on the Brick. Hereisa
description of their function.

2.3.1 Power Switch

The Brick’s power switch is located near the upper left corner of the Brick in
photograph of Figure 1. To turn the Brick on, flip the switch to the position
labelled “ON.”

The Brick should be turned off when not in use. The Brick’s memory is
“non-volatile,” meaning that the Brick remembersits program and any datait has
recorded when it isturned off. Even if the battery runs down so low that the Brick
can’'t be turned on, the memory will not lose data. When the Brick is charged up
again, the data and programswill be present in the Brick’s memory.

The Brick has an internal rechargeable battery that will not need replacement
over yearsof normal use. Battery life, charging, and other detailsrelated to battery
management are discussed in Appendix C, Battery Maintenance.

13

2.3.2 Brick Display

The Brick has a thirty-two character LCD (liquid crystal) display, organized as
two rows of sixteen characters each. User programs may print messages to this
display; also, the Brick maintains a “menu” of user programs loaded onto the
Brick that may be selected at any time.

The Brick can also show continous sensor readingson thedisplay. Inthe Brick
photograph (Figure 1), it is possible to see the sensor readout, showing the six
sensor values.

2.3.3 Buttons and Knob

The Brick has two buttons and one knob for interacting with the Brick’s display
and selecting any programsthat may be loaded.

The knob, located near the lower right corner on the side edge of the brick, is
used to scroll through alist of choices, which are shown on the Brick display. At
any given time, only one choice is displayed on the Brick’s screen; this choiceis
changed by rotating the knob.

To execute the currently-displayed choice, press the button labelled START.”
An asterisk will be displayed in the lower right corner of the screen, indicating
that the program is running.

To stop asingle program, scroll to it on the menu, and press the START button.

To stop all programsthat may be running, and turn all of the motors off, press
the button labelled “ Stop.”

Brick Logo primitives for using the buttons and knob are explained in Ap-
pendix E, which discusses the Brick’s software system.

2.3.4 Status LEDs

The Brick has anumber of status LEDs (light emitting diodes).

Each of the motor outputs has a pair of LEDs that indicate the status of the
associated motor. The green LED indicates the motor is on one way, and the red
LED indicates the motor is on the other way.

There are two additional status LEDs. The green LED labelled “ReADY”
indicates that the Brick is turned on and is operating normally. If the “REAaDY”
LED isnot on, or isblinking on and off, there is a problem with the Brick. Please
refer to Section A.4 for information on how to restart a Brick that has “ crashed.”

14

Thered LED labelled“Low BATT”, for “low battery,” indicatesthat the Brick’s
battery is low and should be recharged. Often, however, when the Brick’s battery
runs down, it doesn’t have enough power to even light the low battery indicator.
Soif aBrick isturned on, and neither the “READY” nor the“Low BATT” LEDs are
lit, it usually means that the battery is completely discharged. Turn the Brick off,
and plug it in to begin recharging it.

2.4 Infrared Control

The Brick has an infrared sensor (located on its right edge) that is used to decode
signals from household TV and VCR remotes. The remotes may be used to send
numeric instructions to the Brick, causing it to execute one of several pre-loaded
programs, for example.

The Brick interprets the infrared codes transmitted by Sony brand remotes.
This allows it to work with any original-equipment Sony remotes, or universa
remotes set to control Sony television and VCR products.

TheBrick’sinfrared sensor hasan omni-directional performance characteristic,
meaning that it is able to see the infrared remote’s signal over a wide range of
angles. If the Brick isbeing used in aroom with white ceilings, it is often possible
to bounce the infrared signal off of the ceiling and into the Brick’s sensor.

2.5 Computer/Charge Connector

The Computer/Charge Connector is located between the power switch and the
start and stop buttons. It looks just like a modular phone jack, and, indeed it isa
modular phonejack. The Brick, however, should never be plugged into an active
telephone circuit! Permanent and serious damage to the Brick is likely to result.?

The Brick is connected to the Interface and Charger Unit via this connector.
When the Brick is plugged in, it both (a) communicates with its host desktop
computer for downloading new programs or uploading data that the Brick has
recorded, and (b) recharges the Brick’s battery.

2Telephone-style wiring and plugs are commonly used for computer networking applications
for their convenience, low cost, and performance. Despite the fact that computer modems plug
into the telephone line, many of these networking products, including the Programmable Brick,
are not meant to be connected to tel ephone circuits.

15

Figure 2: The Nine Volt LEGO Motor

3 Motors

The Programmable Brick was designed to be used with nine volt LEGO motors.
Figure 2 shows the motor aone, and Figure 3 shows the motor attached to its
special LEGO connector cable. One end of the cable plugs underneath the motor,
attaching to the metal studsin the middle, and the other end connectsto one of the
Brick’s motor outputs.

The Brick can control up to four motors, which are referred to as motor A
through motor D. MotorsA, B, and C are capable of bi-directional motor control—
they each can drive a motor forward or backward under software control, while
Motor D can only turn amotor on and off.

Therest of thissection explainsBrick Logo primitivesfor operating themotors.

3.1 Turning Motors On and Off

To control a motor, first specify the motor or motors to be controlled, and then
give the command. For example, the sequence

a, on

16

Figure 3: LEGO Motor and Motor Cable

selects motor A and then turns it on. Notice the comma after the letter “a’; this
syntax is meant to suggest the common English imperative form, as in “Francis,
come here.”

The command “off” is used to turn motors off:

a, off

In addition, the command “toggle” may be used to invert the on/off state of the
motors. motors that are on are turned off, and motors that are off are turned on.
For example:

a, on b, off ab, toggle

This sequence turns motor A on and motor B off, and then toggles them both;
motor A isturned off while motor B isturned on.

3.2 Selecting Multiple Motors

There are a couple of ways to turn on multiple motors. For example, to turn on
motors A and B, either

17

a, on b, on

or

ab, on

will work. Many, but not all, multiple-motor selections are allowed. The combi-
nations allowed are:

ab, bc, ac, abc, abcd,

3.3 Timed Motor Commands

The command “onfor” is used to turn a motor on for a particular period of time.
onf or takesasinput the amount of time, which is specified in tenths of seconds.
Thus,

a, onfor 10

turns motor A on for one second.
To wait for a period of time and leave a motor off, use the “wait” command.
For example, the sequence

a, onfor 10 wait 10 onfor 10

turns motor A on for one second, waits a second, and then again turnsit on for a
second.

3.4 Changing Motor Direction

The command “rd,” for reverse direction, makes a motor spin in the opposite
direction. For example, the sequence

a, onfor 10 rd onfor 10

turns motor A on for one second, reverses its direction, and then turns it on for
another second.

In addition to the r d command, the commands “thisway” and “thatway” may
be used to set motor direction. Thet hi sway command sets the direction to the

18

onein which the green motor LEDs are illuminated, and the t hat way commands
sets the opposite direction, in which the red LEDs are illuminated.

The difference between using rd and t hi sway or t hat way is that the first
reversesthe current direction, whilethe latter two set the direction state to aknown
value.

Note that when amotor isturned on, the direction that it actually spins depends
on the orientation of its two wire connectors—the one plugged into the Brick and
the one plugged into the motor—in addition to the motor direction selected by the
Brick. If either of the connectorsis reversed, the motor’s spin will also reverse.

3.5 Setting Motor Power Level

Motors can be driven at nine degrees of power from off to fully on. The command
to do thisis “setpower,” which takes an input determining the power level. The
power levels range from O, which is off, to 8, which isfully on. Motors begin in
the full-power state, and, aswith all motor commands, set power only affectsthe
motor(s) currently selected.

For example,

ab, setpower 6

sets Motors A and B to power level 6.

The power control works by rapidly switching motors on and off, with a duty
cycle proportional to the power level. For example, at power level 5, motors are
turned on for five phases and off for three. These phases are typically interleaved,
so power 5 might look like on-on-off-on-on-off-on-off. (This technique is known
as “ pulse width modulation.”)

Actua power levels are not strictly proportional, however. Power 7, the step
just beneath thefull power 8, providesless power than theratio of g would suggest.
Thisis due to an electrical effect in which the motors are actively braked during
the off phase of the duty cycle, rather than smply being left to coast.

When motor output are used to control incandescent (flashlight) lamps, power
levelsarefairly proportional.

19

4 Sensors

Therearetwo fundamental kindsof sensors. switch sensors, which provide on/off-
type of readings (for example, the LEGO touch switch), and continuous sensors,
which provide continuous levels of reading (for example, alight sensor).

The LEGO angle sensor is a specia case of a continuous sensor, in which the
sensor’selectrical signals are converted into acount of number of rotations. There
are specia Brick Logo commands for using this sensor.

There are two connector stylesfor attaching sensorsto the Brick:

LEGO Connector LEGO sensors plug onto connectors just like the LEGO
motor connectors.

Mini Plug Connector Custom-made sensors plug into round stereo minijack
connectors.

There are three of each type of sensor connector. The sensors are named with
letters A through F from left to right along the top edge of the Brick. (On some
Bricks, the sensors are incorrectly labelled with the numeras 6 through 1 from
left toright.)

The Brick has two other special sensor functions. An interna timer keeps
track of elapsed time with a precision of one thousandth of a second (ﬁ SEC).
Also, the Brick can determine itsremaining battery level, reported as a percentage
of full charge.

The remainder of this section introduces standard sensors to be used with the
Programmable Brick and the Brick Logo primitives for using them.

4.1 The LEGO Touch Sensor

The LEGO touch sensor is shown in Figure 4. To determine the state of the
sensor, the “switch” primitiveis used. The primitive reports atrue or false value
depending on whether the switch is pressed.

There are three variants of the switch command, depending on which sensor
port is being tested: switcha, switchb, and swi tchc, for a touch sensor
plugged into port A, B, or C, respectively.

The switch primitive reportstrue if the switch is pressed and falseif it is not.
Itistypically used withani f , wai tunti | , or when command. For example, the
statement

20

Figure4: The LEGO Touch Sensor

if switcha [a, onfor 20]

causes motor A to turn on for two secondsif the touch switch plugged into sensor
A ispressed. (Note that this statement must be in aloop in order for the switch to
be repeatedly tested.) In asimilar fashion, the statement

wai tuntil [switcha]

causes the computer to wait until the sensor A switch is pressed.
The switch command can be used in conjunction with the “not” primitive.
Thus,

wai tuntil [not switchal

waits until the sensor A switch is not pressed—that is, until it is released. A
standard method for debouncing a switch pressisto wait for it to be pressed, and
then wait for it to be released:

wai tuntil [sw tcha]
wai tuntil [not switchal
4.2 Continuous Sensors

Continuous sensors provide readings that indicate a range of values. For example,
alight sensor reportsanumber that indicates the amount of light being detected, or
atemperature sensor reports a number that indicates the amount of warmth being
detected.

21

The*"sensor” primitiveisused with any of the continuous-level sensors, such as
the LEGO reflectance sensor, the LEGO temperature sensor, and the custom-made
bend and light sensors. The primitive reports avalue from 0 to 255 depending on
the property being detected, though the actual range obtained is characteristic of
the particular sensor.

The sensor primitive has six forms, corresponding to the six sensor ports.
sensor a, sensor b, sensorc, sensord, sensor e, and sensor f.

When using continuous sensors, it is common to test the value of the sensor
to determineif it is above or below acertain threshold. For example, suppose the
reflectance sensor reports a value near 190 when pointed at a dark surface, and a
value near 170 when pointed at alight surface. Then areasonabletest for the dark
surface would be, “Does the sensor report a value greater than 1807" Trandated
into a Brick Logo statement, this would look like:

ifelse sensorc > 180 [print [Dark surface!]] [print
[Li ght surface!]]

This statement would print “Dar k surface!” on the Brick’s display if the
port C sensor reported a value greater than 180; otherwise, the message “Li ght
surface!” would be displayed. Inarea program, some action would probably
be taken based on the change in sensor value (instead of or addition to the print
statement).

4.2.1 The LEGO Reflectance Sensor

The LEGO reflectance sensor is primarily used to measure the reflectivity of a
surface. It performs this measurement with two particular electrical components.
One emits a beam of red light, and the other detects how much light is received.
When aimed at a surface, the light from the emitter is reflected into the detector.
Bright surfacesreflect alot of light while dark surfacesreflect lesslight (assuming
a constant distance from the reflection surface to the sensor, and constant room
lighting).

The sensor works best at distances between one-eighth and one-half of aninch
from the reflecting surface. It is also helpful to shield the sensor from ambient
roomlighting. Also, sincetheemitter shinesredlight, thedeviceactually measures
reflectivity to red light, which may or may not correlate to one'svisual impression
of the general reflectivity of a surface.

22

Figure 5: The LEGO Reflectance Sensor

The reflectance sensor can also be used to detect ambient light (i.e., room
lighting), ssmply by aiming it toward open space. Its detector, however, has a
lensthat givesit afairly narrow beam of detection. Depending on one’s intended
application, this may be adesirable or undesirable property.

The LEGO reflectance sensor plugs into sensor ports A, B, or C, and hence
is used with the sensor primitives sensor a, sensor b, and sensorc. Typical
reflectance readings range from 170 to 190, though lower values may be detected
if ambient light is shining directly into the sensor.

4.2.2 The LEGO Temperature Sensor

The LEGO temperature sensor measures heat. The metal tip of the sensor is the
heat-sensitive component. The tip may be submerged in water.

The values reported by the sensor have an inverse relationship to standard
temperature measurements. higher values indicate lower temperatures. Also,
the sensor’s readings are not linear with respect to standard temperature scales. A
useful experiment would beto measure the correl ation between the values reported
by the sensor and a standard temperature scale.

The LEGO temperature sensor plugs into sensor ports A, B, or C, and is used
with the sensor primitivessensor a, sensor b, and sensor c.

23

4.2.3 The Bend Sensor

The bend sensor is custom-made sensor that measures the amount of bending in
a flexible plastic strip. 1t was designed for measuring the amount of flex in a
person’s finger for the Nintendo Power Glove, but has many robotic applications.

The sensor reports increasing values for increasing amounts of flex. It is
sensitive only when bent in one of the two possible ways of flexing from the flat
resting position.

Bend sensors plug into sensor ports D, E, or F and are used with the sensor
primitivessensor d, sensor e, and sensor f .

4.2.4 The Photocell Light Sensor

The photocell light sensor is a custom-made sensor used for measuring ambient
light. Unlikethe LEGO reflectance sensor, it does not have alens on its detection
element, so it is sengitive to general, undirected room lighting.

Depending on how a given sensor was wired, it may yield increasing or de-
creasing values with increasing amounts of light, so it is best to experiment with
each particular sensor device to determine its characteristic.

Photocell light sensors plug into sensor ports D, E, or F and are used with the
sensor primitivessensor d, sensor e, and sensor f .

425 The Sound Sensor

The sound sensor is a custom-made sensor that consists of an integrated micro-
phone/amplifier assembly. It reports sound level as awaveform centered around a
value of about 147. Sounds will create peaks above this value and troughs below
it; stronger soundswill create higher peaks and lower troughs.

A smpleway to use the sensor is as a detector for loud sounds by looking for
a high peak (or alow trough). For example, the statement

when [sensord > 160] [note 80 5]

setsup aprocessto repeatedly check the value of sensor D and makeashort * beep”
when it rises above 160. Lowering the threshold point of 160 will make the sensor
respond to quieter sounds.

It is also possible to sample a short snippet of sound data and record the
waveform. For example, the procedure

24

to sanple

erase

repeat 5000 [record sensord]
end

quickly samples 5000 points of sensor data, which then can be downloaded to
a host computer for processing. The Brick records data in this manner at a rate
of about 11,000 samples per second. (The Brick has a limited data buffer; see
Appendix E.6 for information about using the Brick’s data-taking primitives.)

The sound sensor plugs into sensor ports D, E, and F, and hence is used with
the sensor primitivessensor d, sensor e, and sensor f .

4.3 The LEGO Angle Sensor

The LEGO Angle Sensor isused to measure the rotation of an axle that isinserted
through the sensor. Each revolution of the axle yields a measurement of sixteen
counts. Turnedinonedirection, the sensor countsup; turned in the other direction,
it countsdown. Thisallowsfaithful readingseven when the shaft changesdirection.

The " counter” command is used to report the number of rotations; the “resetc”
(reset counter) command is used to set the corresponding counter to zero. There
are three forms of each of the two commands, corresponding to the three LEGO
Sensor ports: count er a, count er b, and count er ¢ to report values for each of
three sensors, and r eset ca, reset ch, and r eset cc to reset these counters to
zero.

It is possible to determine angular velocity by taking differences in the posi-
tional count at regular intervals. For example, thegl obal command can be used
to set up global variables to keep track of the velocity of counter A, the last count
reading, and atemporary variable to be used in the vel ocity calculation:

gl obal [velocitya |astcounta tenpa]

Then the ever y primitive can be used to take a velocity reading at a regular
interval; for example, every second:

every 10 [settenpa countera
setvelocitya tenpa - lastcounta
setl astcounta tenpa]

25

Every second, t enpa, atemporary variable, isset to bethecurrent count. Then,
the current velocity reading is determined: the difference between the current
count (t enpa) and the previous count (I ast count a). Finally, thel ast count a
variableis set to the current count for the next iteration.

In this example, the velocity readings are calculated every second, but the
best length of thisinterval should be determined based on how rapidly the count
advances in the desired application.

The Brick takes sensor readings 300 times per second. The axle should not
turnfaster than about 18 timesper second in order that the Brick does not losetrack
of the counter transitions (300 counts/second divided by 16 counts/revolution is
18.75 rotations/second).

4.4 Timing Sensor

The Brick has atiming function that keeps track of elapsed time. The command
“timer” reports the elapsed time in milliseconds (thousandths of a second). The
command “resett” resets the timer value to zero.

These commands may be demonstrated with the following code sample. Try
running this sequence from a Brick screen dot:

resett wait 50 print tinmer

What happens? First, ther eset t command resetsthe timer to zero. Then the
Brick waitsfor five seconds (thewai t 50 command). Next the Brick printsthe
current elapsed time on the screen. What valueis shown?®

The Brick’s internal crystal, which operates the Brick microprocessor and
thereby controlsthe timing function, is accurate to afew parts per million. There-
fore the Brick’stimer can be considered afairly accurate source of time data.

4.5 Battery Level Sensor

The “battery” primitive reports the Brick’s battery level as a percentage of full
charge. The following statement demonstrates usage:

type [Level is] type battery print [%

3The Brick should display 5000—the number of millisecondsof timethat elapsesin thewai t
50 statement.

26

The level reported by the bat t ery primitive is not valid when the Brick is
being charged by the Interface/Charger Unit. When charging, it would typically
report a 100% charge, unless the actual battery level is very low. Therefore, to
perform this test, it's a good idea to put the above statement into a Brick screen
item dlot (see Appendix A.3) and run it when the Brick is disconnected from its

charger.

27

Figure 6: The Brick Interface/Charger Unit

A Getting Started

This section provides step-by-step instructionsfor setting up the Brick’s hardware
and software. The order of activities will be: first setting up the hardware, then
installing the software, and then running the software.

Note: The diagrams and instructions that follow assume that you
will be using a Macintosh computer with the Brick. If you are using
an MS-DOS IBM compatible computer, please refer to the additional
instructions in Appendix B, MS-DOS Computer Information.

A.1 Setting up the Brick Hardware

Thefirst step is to locate the five components that are needed to set up the Brick
system:

1. TheBrick itself.

28

2. The Interface/Charger Unit, or 1/C Unit. The I/C Unit is depicted in Fig-
ure 6. Itis smaller than the Programmable Brick, quite light in weight, and
contained in adark blue or black plastic case.

3. The DC power adapter. The power adapter is used to provide power to the
I/C Unit (both for its own electronics and to charge the Brick).

4. The Macintosh modem cable. Shown in Figure 8, the modem cable is used
to connect the 1/C unit to the Macintosh.

5. Thetelephonecable. The Brick isconnected to thel/C Unit using astandard
telephone extension cable.

Figure 7 illustrates the method for setting up the Programmable Brick system
hardware. Here are step-by-step instructionsfor setting up the system asindicated
in the diagram.

1. Locate the Macintosh modem cable (depicted in Figure 8), and plug the
small round end into the Macintosh’'s modem port. The modem port has a
little picture of atelephone handset aboveit, like this:

o
x‘:'x
0

2. Locatethe Interface/Charger Unit. Plugthe other end of the modem cable—
alarge, D-shaped connector—into the corresponding jack on the I/C Unit.

3. Locate the DC wall adapter and unroll its cable. Connect the round plug to
the 1/C unit; then plug the AC prongs into a household outlet. At this point,
thered LED labelled “PoweR” on the I/C Unit should light.

If the red LED does not light, check that the adapter is indeed plugged
into the household wall outlet. If it still doesn’t light, try another outlet.
If it still doesn’t light, there is a problem with either the DC adapter or
the Interface/Charger Unit itself; you will need to contact us for technical
support.

4. Locate the telephone cable. Plug one end of the cable to the jack on the |/C
Unit, and the other end into the jack on the Programmable Brick.

29

M acintosh r
M odem cable &9

connects |/C Unit to
M acintosh. Modem cable
plugsinto

t]

Programmable Brick

\ modem port.
I nterface/Char ger
(1/C Unit)

E._ Telephone cable

connects |/C Unit to Brick.

“—— bcwal Adapter

supplies power to I/C Unit.

Figure 7: Programmable Brick, Interface/Charger, and Host Macintosh

30

i o ¥

Ll
__ £5 -E.'ll l
Thisend plugsinto the This end plugsinto
Interface/Charger Unit. the Macintosh.

Rl

Figure 8: Macintosh Modem Cable

31

5. Onthelnterface/Charger Unit, set theswitch labelled “ CHARGE RATE” to the
“NORM” position (normal charge). At this point, the yellow LED labelled
“CHARGE" on the I/C Unit should light.

If the yellow LED does not light, first make sure you have selected Normal
Charge and the Brick is plugged into the I/C Unit. Sill no light? Unplug
the Brick and check if the red power light on the I/C Unit ison. If not, go
back to Step 3, above.

If the red power light is on (with the Brick unconnected), go ahead and plug
the Brick back in. Check to see if the yellow light is on very dimly. This
would mean that the Brick battery isfully charged.

If you still see no light, proceed on the assumption that the Brick battery is
so fully charged and the Charge LED is simply too dimto see.

A.2 Installing the Brick Software

The Brick software system makesuse of Logo MicroWbrlds, amodern commercial
implementation of the Logo languagethat issold by Logo Computer Systems, Inc.
(LCSI).* The Brick software requires version 1.02 or later of MicroWorlds; if you
have an earlier version, contact LCSI for upgrade information.

To ingtall the Brick software, insert the Brick software distribution diskette
into the Macintosh computer. On the disk will be afolder named “BRICK LOGO”.
Copy thisfolder onto your hard drive.

There arefour filesinside this folder:

BRICK LOGO 120 This file is the main Microworlds project for using the Pro-
grammable Brick.

LOADBRICK (RED) ThisfileisaMicroworldsproject that is used for reloading the
Brick’s operating program.

RED.CODE Thisfile containsdatato be downloaded to the Brick by the LOADBRICK
program.

-TooLs- Thisfile contains patches to Microworldsto allow it to properly run the
BRICK LOGO program.

4Contact information for LCSI can be found in Appendix J, Suppliers.

32

sS[=——— Brick-logo [Pagel) =——r———|

Brick Procedures Area

Brick Command Center

=@
7
El

a
_ L3
MicroWorlds Command Center @5

Figure 9: Brick Logo Screen with Annotations

A.3 Running the Brick Software

To start up the Brick Logo software, double-click on the Microworlds project
named “BRICK LoGo.” Click past the Microworlds splash screen, and the display
shown in Figure 9 will be displayed. Hereisthe function of the various elements
of the screen display:

Brick Command Center. In the lower left corner of the Brick Logo page is
a region labelled Brick Command Center. This is for typing commands
directly to the Brick. When you type acommand in thisbox, it is sent to the
Brick immediately and run.

Brick Procedures Area. Thelargerectangleontheright-hand side of the page,
labelled Brick Procedures Area, is for programs to be downloaded to the
Brick. Your Brick programs are typed into the box, and downloaded to the
Brick when the Download button is clicked.

33

Brick Screen Items. Above the Brick Command Center are seven single-line
text boxes. Commandstyped into thesewindowsaredisplayed ontheBrick’'s
screen (selectable using the Brick’s knob) after programs are downloaded
to the Brick. Pressing the Brick’s* START” button causes the item currently
being displayed to be run.

Download Button. Above the Brick Command Center is a button labelled
Download. When this button is clicked, all procedures in the Procedures
Area, aswell asthe Screen Items, are downloaded tothe Brick. Any previous
procedures are erased from the Brick’s memory.

The Download button will highlight while the information is being down-
loaded to the Brick; also, the message “Downl oadi ng. .. " will be dis-
played in the Microworlds Command Center. When the download process
is complete, the message “done. ” will be displayed there.

MicroWorlds Command Center. The window at the bottom of the screen is
the Microworlds Command Center. Commands typed into this window
are executed by MicroWorlds rather than the Brick itsalf; for example, the
commandsto load and save Brick programsto the host computer hard drive
aretyped here. Also, status messages during download are displayed here.

At this point, check to see that the green “CoMPUTER” LED on the Inter-
face/Charger Unit islit. If the green LED isnot lit, MicroWbrlds will not be able
to communicate with the Brick. Check that the I/C Unit is correctly plugged into
the modem port.

Turn the Brick on. Rotate its knob, and you should see various messages
displayed on its screen, likeon, of f, rd, and afew others. Turn the knob all the
way clockwise, and you should see two rows of numbers—the sensor readoui.

If the Brick screen display does not come up, try turning the Brick off and then
on again. If it does not come up after afew tries, the Brick will need to have its
operating program reloaded. Skip ahead and follow the instructions in the next
section, Reloading the Brick Operating Program, and then come back here after
the Brick isworking normally.

Plug the Brick into the I/C Unit, and the Brick is ready to accept commands
from MicroWorlds. Click the mouse in the Brick Command Center, and type the
command to turn on motor A:

a, on

S[f=—— Brick-logo (Pagel| =——— |

test to test

print [Running test!]
d, oh
note 7@ 1@
q, off
end

L
[]
]
]
]
. 1
(Bowneas)

Figure 10: Brick Logo Test Program

After pressing return, MicroWorlds will send the command to the Brick, and
the green LED above motor port A should turn on. If there is a motor plugged
into port A, it will turn on as well. Did it work? If not, check to make sure
that you typed the command exactly as indicated (lower-case “a’, comma, space,
lower-case “on”) and that you typed it into the Brick’s command center, not the
MicroWorlds command center (see Figure 9).

Try the command to reverse the direction of the motor:

rd

Thered LED for motor A will turn on, indicating the opposite direction as the
green one. If thereisamotor plugged in, it will change direction, though it might
not be evident except for the “skip” it will makeif it was plugged in and running
when the r d command was executed.

Now let’s try a simple Brick program. In the Brick Procedures Area, type in
the following Brick Logo procedure:

35

to test
print [Running test!]
a, on
note 70 10
a, off
end

In one of the Brick screen item dots, type the name of this procedure, “test.”
The MicroWorlds screen should look like screen snapshot shown in Figure 10. In
thefigure, thefirst screenitem dlot isused to indicatethet est procedure, but any
of the seven dots will work fine.

Click on the Download button, and the procedure and screen items will be
downloaded to the Brick. The green CoMPUTER LED on the Interface/Charger
Unit will flash briefly while the program isbeing downloaded (since thisisasmall
program, there won'’t be much flashing). When the download process is finished,
the Download button will un-highlight.

The program should now be loaded on the Brick. Rotate the Brick’s knob to
look through its screen items until the word t est is displayed (the blank screen
itemsareindicated by “- - -). Pressthe” START” button, and thet est procedure
will be run. The Brick’s display will read Runni ng test! and the Brick will
turn on motor A for one second while beeping.

This completes the introduction to basic Brick operation. From here, the next
subsection, Reloading the Brick’s Operating Program, explains what to do if the
Brick fails due to a software error. Section 3 explains the Brick’s motor control
primitives, and Section 4 explains how to use standard Brick sensors. Appendix E
isthefull Brick Logo language reference.

A.4 Reloading the Brick Operating Program

When the Brick “crashes’—fails unexpectedly due to a software error—it is nec-
essary to reload the Brick’s operating program. This is done with a Microworlds
project named “LOADBRICK”.

To use the “LOADBRICK” project, double-click on the “LoADBRICK” file. This
will open the MicroWorlds application, if it is not aready running. If there is
another MicroWorlds project open, it will be necessary to close that project before
the “LOADBRICK” project will open.

36

When the“LOADBRICK” project loadsinto MicroWorlds, ashort list of instruc-
tionswill be shown on the screen, along with a screen button containing the word
“loadbrick.” By following these instructions, repeated here, the Brick’s operating
program will be reloaded:

1

Make sure the Brick is connected to the host computer. In order to reload
the Brick operating program, it must be connected to the host compuiter.
Appendix A.1 explains how to do this.

. Turn the Brick off. Thereis a special sequence to boot the Brick into the

mode where its operating program can be reloaded, and the first step isto
turn the Brick off.

Hold down the “ START” button, and turn the Brick on. When the Brick
is powered up in this fashion, the red “Low BATT” LED should flash for a
fraction of a second, and then the green “ReEADY” LED should turn on. At
this point, the “START” button may be released.

If the green “READY” LED does not come on, or if al of the Brick’'s LEDs
are flashing wildly, then the Brick did not boot up properly. Try turning the
Brick off and on again, holding down the “START” button until the green
“ReADY” LED turnson.

Clickthemouse onthe* loadbrick” button. The screen button will highlight,
and the computer will commence loading the Brick’s operating program.

Onthe Interface/Charger Unit, the green“ComMPUTER” LED will flashwhile
the download isin progress.

When the download is finished, the screen button will un-highlight, and the
green “CoMPUTER” LED will stop flashing.

Turn theBrick off, and thenturnit on again. Thistime, do not hold down the
“START” button—turn the Brick on normally. The Brick’s “ReaDY” LED
should comeon, and its standard listing of screen items should be displayed.

37

B MS-DOS Computer Information

The Programmable Brick software for MS-DOS computers is currently under
development. We are working on a Microsoft Windows version, and don’t expect
to develop a DOS-only version. Please contact usfor more details.

38

C Battery Maintenance

This section explains how to operate the battery charging system on the Inter-
face/Charger Unit. For users who don’t want to be bothered with too much detail,
it's adequate to remember just three things:

1. Leavethel/C Unit on“normal charge” at al times.
2. Turn the Brick off and keep it plugged in to the I/C Unit when not in use.

3. Make sure that the I/C Unit itself has power from the wall adapter.

This is tricky because power from the Brick will cause the I/C Unit's
“Power” LED to light up even if the I/C Unit is unplugged. In this cir-
cumstance, the I/C Unit is actually draining power from the Brick’s battery,
not charging it! Therefore, to check that the I/C Unit is powered, it’'s neces-
sary to unplug the Brick and check that the I/C Unit's “POWER” LED stays
lit.

Following is additional information about the battery and charging system.

C.1 Charging Modes

Thelnterface/Charger Unit allowstwo charging modes, sel ected by thedideswitch
labelled “ CHARGE RATE”:

Normal Charge. In the norma charge mode, the Brick will be completely
charged in about twelve to fourteen hours. When the yellow LED on thel/C
Unitislit, the system isin normal charge mode.

Zap Charge. In the zap charge mode, the Brick will be fully charged in about
threeto four hours. After thistime, the Brick’s battery pack will start to get
warm, and the Brick should be removed from charge or placed into normal
charge.

The Brick should not be left on zap charge for periods of more
than 24 hours; permanent damage to the Brick’'s battery will
result.

A few additional notes about battery charging and maintenance:

39

e When leaving the Brick to charge overnight, the Brick’s own power should
beturned off, and the I/C Unit should be set to Normal Charge. (If the Brick
isleft on, its battery will charge too slowly.)

e To make surethe Brick’sbattery isnot over-charged, zap charge should only
be used when the Brick is being attended.

During norma use, the Brick will be aternately plugged into the host
computer and then removed for testing. While the Brick is plugged in, the
battery will charge alittle. If the Brick isto be used for an extended period
in this fashion, putting the charger into Zap Mode will help keep the Brick
fully charged. Just make sureto put in back into Normal Mode whenleaving
the Brick at the end of the day.

e Inaclutch, thel/C Unit may be used without its DC power adapter. In this
case, it will draw power from the Brick. The Brick should not, however,
be left connected to an unpowered 1/C unit overnight, because the Brick’'s
battery will become depleted—even if the Brick itself isturned off.

C.2 Battery Life

On afull charge, the Programmable Brick should last for a maximum of eighteen
hours of continuous operation—enough for an overnight data-taking experiment.

When operating motors, however, the battery life is significantly shorter—
about one to four hours, depending on how often and how many motors are in
operation. If one motor is operating continoudly, expect a battery life of about two
hours.

To set up projects where the Brick needs to operate for longer periods of time
unattended, leave the Brick plugged in to the Interface/Charger Unit while the
Brick isrunning. Set the I/C Unit to the normal charge mode.

C.3 Battery Level Readout

The “battery” command reports the battery level as a percentage of full charge.
This command will normally report afull charge whilethe Brick is being charged
from the Interface/Charger Units, so in order to get a proper reading, one must
either (a) run a battery level command using the Brick’s buttons and knob while

40

it is disconnected from the I/C Unit, or (b) remove power from the I/C Unit and
issue the battery command from the computer screen Brick Command Center.

To try out the bat t ery command, put the statement “pri nt battery” in
one of the Brick screen item dots, and run it while the Brick is disconnected from
the computer.

41

D The Brick Interface/Charger Unit

The Brick Interface/Charger Unit, or I/C Unit, serves adual function, asindicated
by its name:

¢ Itinterfacesthe Brick to a desktop compuiter.

e It rechargesthe Brick’sinterna battery.

This section presents reference information on the function of the connectors,
LEDs, and switch on the Interface/Charger Unit. The I/C Unit is depicted in
Figure 6 on page 28.

D.1 Connectors

The I/C Unit has three connectors:

Computer Connector. The large, D-shaped connector is used to connect the
I/C Unit to the host computer.

Brick Connector. Thetelephone-style connector isused to connect the I/C Unit
to the Brick.

DC Power Jack. The remaining connector supplies power to the I/C Unit, for
operating its own circuitry and for recharging the Brick’sinternal battery.

D.2 Status LEDs
The I/C Unit has three status LEDs:

Computer. ThegreenLED labelled “ComMPUTER” lightswhen the host computer
is sending a communications signal to the Brick.

Note to Macintosh users: The Macintosh typically does not gen-
erate the communications signal until after the Brick software is
started up. Therefore, when the I/C Unit is first connected to the
Mac, this LED won't light up.

42

Power. The red LED labelled “PowEeR” lights when the I/C Unit is receiving
power.

Note: The I/C Unit may receive power from either the DC wall
adapter or the Programmable Brick. If the I/C Unit is connected
to the Brick and the DC power is disconnected, the 1/C Unit will
drain the Brick’s battery to receive its own power.

Charge. Theyelow LED labelled“ CHARGE” lightswhenthel/C Unitischarging
the Brick’sbattery. The I/C Unit must be plugged into DC power in order to
charge the Brick (see above); otherwise, it will drain power from the Brick.

The yellow LED turns off when the I/C Unit is charging in Zap Mode (see
below). Also, when the Brick is completely charged, the charge LED may
not light, even when in Normal mode.

D.3 Charge Rate Switch

When |eft to charge, the Brick itself should be turned off. Thel/C Unit hasadide
switch labelled “ CHARGE RATE” that selects one of two charging modes.

Normal Charge. Labelled “NormM”, the normal charge mode fully charges the
Brick in twelve to fourteen hours. During normal charge mode the yellow
“CHARGE" LED should light.

Zap Charge. Labelled “ZAP!!”, the zap charge mode fully chargesthe Brick in
about three hours. During zap charge mode the yellow “ CHARGE” LED will
not light.

Please see Appendix C, Battery Maintenance, for more information about
battery charging and caveats about using the Zap Charge mode.

43

D.4 Adapter Specifications

The Interface/Charge Unit was designed to work with a range of power adapters.
The specifications for a compatible adapter are:

VOLTAGE 12-15v
CURRENT 300-500 mA
POLARITY ACor DC

PLUG STYLE coaxia power plug
PLUG SIZE | 2.1 mm D, 5.5 mm OD

E Brick Logo Quick Reference

Brick Logo is the language used to write programs that run on the Brick. Brick
Logoissimilar totheversionsof Logo that are part of thecommercial LEGO Dacta
products (both LEGO tc logo and LEGO Control Lab). Previous experience with
either of these two products, as well as any other Logo experience, will trandate
easily to writing programs for the Programmabl e Brick.

E.1 Motors

Motors A, B, and C are bi-directional (the motors can be reversed under software
control). Motor D is uni-directional—the Brick can only turn the motor on and
off, and the direction is determined by the way the cable is connected.

a, Selectsmotor A for subsequent commands.
b, Selects motor B.

c, Selectsmotor C.

d, Selectsmotor D.

ab, Selectsmotors A and B together.

bc, SelectsmotorsB and C.

ac, SelectsmotorsA and C.

abc, SelectsmotorsA, B, and C.

abcd, Selectsall motors.

on Turns selected motor(s) on.

of f Turns selected motor(s) off.

t oggl e Inverts on/off state of selected motor(s); i.e., motors that are off go on,
and motors that are on go off.

rd Reverses direction of selected motor(s).

t hi sway Sets selected motor(s) for one of the two possible directions (indicated
by the green motor LED being illuminated). When motors are first turned
on, they arein the “thisway” state.

45

t hat way Sets selected motor(s) for the other of the two directions (indicated by
the red motor LED being illuminated).

onf or time Turns selected motor(s) on for time tenths of seconds.

set power level Setsthepower level of the selected motor(s). Power levelsrange
from 8 (full power) to O (off). Theinitial state of motors, when turned on, is
full power.

E.2 Sensors

swi tcha
swi tchb

swi t chc Reportsvalueof switch sensor (pressedis“true,” not pressedis“false”)

sensora
sensorb
sensorc
sensord
sensore

sensor f Reports value of sensor as a number from O to 255.

countera

counterb

count er ¢ Reports counts on angle sensor.

resetca

resetchb

reset cc Resets count to zero.

ti mer Reports amount of elapsed time in milliseconds. Reset by resett or
pressing STop button.

resett Resetselapsed time count to zero.

bat t ery Reports battery level as apercentage of full charge (0 to 100).

46

E.3 Control Structures

wai t time Waits (does nothing) for time tenths of seconds.

wai tuntil [condition] Waitsuntil condition becomes true.
Example: wai tuntil [sensora > 180]

i f condition[action] Performsaction if conditionistrue. Typicaly used in a
loop to repeatedly test the condition. Example: i f swi tcha [ad, rd]

i f el se condition[action] [else-action] Performsactionif conditionistrue;
otherwise, performs else-action. Example: ifel se sensora > 180
[a, on d, off][a, off d, on]

repeat times[action] Repeatedly performsaction for times number of times.
Example: repeat 10 [ad, onfor 10 rd]

| oop [action] Indefinitely loops performing action. To exit, use st op com-
mand, which causes currently running procedure to terminate.

E.4 Input/Output
E.4.1 LCD Display

print "word PrintsasinglewordtotheLCD screen. Example: print "hel |l o

print [wordlword2word3...] Prints phrase to the computer screen. Ex-
ample: print [hello there nmatey]

pri nt number Printsanumber to the LCD screen. Example: print sensora

type Used like pri nt, but allows multiple statements to print onto the same
display line. Example: t ype [Sensor is] print sensora

top Selectstop line of display for subsequent printing.

bot t om Selects bottom line of display.

47

E.4.2 Input

The following describes the action of the start and stop buttons.

START button. Pressing the START button causes the screen item currently dis-
played on the Brick’s LCD screen to be run (if it wasidle). An asterisk is
displayed in the lower right corner of the screen while the item is running.
If the screen item was already active when the START button is pressed, then
theitem’s process is stopped.

Stop button. Pressing the Stop button causesall processes running on the Brick
to be stopped. All motor outputs are turned off. Additionaly, the internal
motor state is reset to the power-on defaults. all motors a set power 8,
directiont hi sway, and talkto state a, .

E.4.3 Sound

not e midi-step duration Plays atone on the Brick’s beeper. Pitch is determined
by midi-step number, which represents successive semi-tones as value in-
creases. Audiblevaluesrangefrom about 40 (low tones) to 120 (high tones).
duration is specified in tenths of seconds.

E.4.4 Infrared Communication

The Brick infrared commands from a Sony-brand infrared remote (or a universa
remote programmed to transmit Sony codes). Keys 1 through 7 cause the first
through seventh screen item, respectively, to be run.

When the Brick is running a program, the Power key will cause the program
to stop (thisis equivalent to pressing the Stop button). In addition, Brick Logo
programscan usethefollowing primitivesto send and receiveinfrared codes. Note
that if a Brick transmits the code corresponding to the “1” key to another Brick,
the Brick receiving the transmission will run the screen item corresponding to the
key. If this program is already running, receiving the code will stop execution;
otherwise, it will initiateit.

i r Reports a number corresponding to a key on an infrared remote or signal
transmitted from another Brick.

i rf Reports number received by infrared sensor plugged into sensor port F.

48

i rsend value Sends value from 0 to 255 to another Brick, using infrared trans-
mitter accessory plugged into motor port D. Note trand ation table below.®

Transmitted Received
Character Action
128 or 18 runs/stops menu item 1

129 or 20 runs/stops menu item 2
1300r 19 runs/stops menu item 3

131 or 17 runs/stops menu item 4
132 runs/stops menu item 5
133 runs/stops menu item 6
134 runs/stops menu item 7

149 or 223 | stops all processes & motors

E.4.5 Serial Line

The Brick can send characters over the serial linewhileit isexecuting Brick Logo
programs. The seria line setting is 9600 baud, eight bit data, no parity.

send char Transmits lower byte of char over serial line.

E.4.6 Speech Output

The Brick can connect to aspecially-modified version of RC Systems' voice board
for natural-speech output.® The “say” primitiveis used to transmit information to
the voice board over the Brick’s serial line connection:

say "word Outputsasingleword to the voice board. Example: say "hel l o

say [wordlword2word3...] Outputs phrase to the voice board. Example:
say [hello there natey]

SThistableis used to trand ate the channel /volume up/down keys, from a Casio infrared watch,
into the codesfor buttons 1 through 4. The 149 code isthe Power key, and the 223 codeisthe Stop
key on Sony CD player remotes.

8Contact the authors for information about how to wire the voice board to the Brick.

49

say number Outputs a number to the voice board. For example, say sensor a
would result in the current value of sensor A being transmitted. The voice
board converts the numeric representation (e.g., “193") to its spoken form
(e.g., “one hundred ninety three”).

After any power-on, it is necessary to send the voice board an odd-numbered-
byte over the serial line, followed by a short delay, to establish communications
baud rate. The carriagereturn character, 13, isagood choice. Also, it isnecessary
to send the carriage return to get the board to speak words that have been already
transmitted:

to init-speech-board
send 13 wait 1
end

to test-speech-board
say [hello there.] send 13
end

E.5 Multi-Tasking

The Brick can support up to eight concurrent processtasks. Each of the following
primitives launches a new task.

E.5.1 Launching Processes

' aunch [action] Launches action as a separate process.

forever [action] Launches a process to repeatedly execute action. Equiva
lenttol aunch [l oop [action]].

when [condition][action] Launches a process to repeatedly test condition
and execute action when it becomes true.

The condition clause for the when statement fires on edge-triggered logic;
that is, action is run each time that condition changes from falseto true. In
the case in which the condition is true the first time the when statement is
executed, the action isnot run.

50

every time[action] Launches a process to execute action every time tenths-
of-seconds.

E.5.2 Stopping Processes

Pressing the Stop button or sending the infrared stop code stops al running tasks,
turns off motors, and resets the internal motor state (see E.4.2).

st oprul es Stops all processes except the one executing the “stoprules’ com-
mand.

E.6 Data Recording and Playback

There is a single globa array for storing data which holds 5887 2-byte integer
values. Thereis no error-checking to prevent against overrunning the data buffer.

er ase Resets the datarecording pointer to zero.

recor d value Records value in the data buffer, and advances the recording
pointer.

recor d# Reportsvaue of record pointer, indicating where the next data point to
be recorded will go.

resetr Resetstherecal pointer to zero.
recal | Reportsvalue of current data point, and advances the recall pointer.

recal | # Reportsvalue of recall pointer.

E.7 Procedures, Variables, and Comments
E.7.1 Procedure Definition
Procedures are defined using the keyword “to”; i.e.:

to test
procedure body
end

51

E.7.2 Procedure Inputs

Inputs, or arguments, to procedures are declared using the standard Logo colon
syntax; e.g.:

to test :inputl :input2
top type [Input 1 is] print :inputl
bottomtype [Input 2 is] print :input2
wait 10

end

Procedure inputs are local variables.

E.7.3 Local Variables

Local variables are declared using thel et keyword, accessed using Logo's colon
syntax, and set using the make keyword:

to | ocal -exanpl e
l et [al ocal 5 anotherlocal 17]

print :alocal ; prints "5"

make "anot herlocal 3

print :anotherlocal ; prints "3"
end

The“let” declaration should be made at the beginning of a procedure.

E.7.4 Global Variables

Global variablesare declared using the gl obal keyword, which takesalist of the
names of globalsto be created; i.e.:

gl obal [namel name2 name3 ...]

This declaration should come at the beginning of the procedure buffer. After
being declared, each global is set using a mechanism in which the global nameis
preceded by the word “set”; their values are accessed by using the global name as
areporter; e.g.:

52

gl obal [nygl obal]

to test
set nygl obal 3
print nygl obal
wait 10

end

Global variables maintain their value when the Brick is power-cycled.

E.7.5 Procedure Return Values

By default, procedures do not produce return values. Procedures may return a
numeric value using the out put primitive; e.g.:

to double :n

output :n * 2
end

Procedures may terminate at any point using the st op primitive, which exits
the procedure without producing a return value.

Care should be taken to ensure that a procedure either always or never exits
with areturn value.

E.7.6 Code Comments
There are two formsfor comments in the procedure buffer:

e Any text between theend statement of one procedureand thet o declaration
of the next procedureis ignored.

e Any text after asemicolon (*;”) on any given lineisignored.

53

E.8 Numeric Operations

Brick Logo is based on signed 16-bit integer arithmetic (all numeric values arein
the inclusive range from —32768 to +32767).

All of the following arithmetic and boolean operators must be preceded and
followed by a space. For example, the following expression is not legitimate:

print 3+4

E.8.1 Arithmetic Operators

The following arithmetic operators are supported, using infix notation:
+ — addition.

- — subtraction.

* — multiplication.

| —division.

\ — remainder.

The minus sign may also be used as a prefix negation operator.

E.8.2 Boolean and Bitwise Operators

The Boolean operators always produce values of zero or one. In evauating
conditionals, zero isfalse; any value other than zero is true.

and — performsbitwise “and” function. Prefix.
or — performsbitwise “or” function. Prefix.

not — performsBoolean logical negation. Prefix.

\Y

— performs Boolean test for greater-than. Infix.

N

— performs Boolean test for less-than. Infix.

— performs Boolean test for equality. Infix.

54

Since the Boolean operators produce values of one and zero, and non-zero
resultsare considered true, theand and or operators, which are bitwise, can func-
tion as Booleans when combining the result of other conditionals. The following
exampleillustrates correct usage:

if and (:value > 100) (:value < 150) [doit]

E.8.3 Precedence

Order of evaluation is from left to right; standard rules of precedence are not
observed. Parentheses may be used to override the standard order of evaluation.
E.8.4 Random Numbers

Brick Logo includes a primitive for generating pseudo-random numbers. The
“random” primitive takes as input the upper limit of the number to be generated,
and reports a value between 0 and that number minus 1 (inclusive).

randomlimit Reports a pseudo-random number between 0 and limit — 1 (inclu-
sve).
E.9 File Management

To save and load Brick Logo programs, please usethefollowing (rather than saving
multiple copies of the Brick Logo project):

saveal | "filename Saves proceduresand screen itemsinto file named filename.

| oadal I "filename Loads procedures and screen items from file named file-
name.

These commands must betyped into the MicroWorldscommand center, located
at the bottom of the computer screen, not the Brick command center.

It is aso possible to save an entire Brick Logo project (procedure definitions
and screen items) to a Brick. Use the following commands:

savet obri ck Savesproceduresand screen itemsto a Brick.

| oadf ronbri ck Loads proceduresand screen itemsfrom a Brick.

55

F Error Messages

This appendix contains a listing of common errors and their likely causes and
solutions.

Sensor problem Thismessage would beseen ontheBrick’sLCD display. It means
that a motor or other short-circuit has been plugged into one of the LEGO
sensor ports. When this happens, turn the Brick off and check the wiring of
the devices plugged into the Brick’'s LEGO sensors.

Stack bug This message would be seen onthe Brick’sLCD display. Thismessage
indicates an internal system error that may be due to a mistake in a user
program, or may be the result of a hardware problem or bug in the Brick’s
own software.

When this message occurs, the best solution isto rel oad the Brick’s runtime
program using LOADBRICK, and then try to download your program to the
Brick again. If the problem recurs, try to removethelast bit of programming
you just added before the problem occurred, and try again.

| don’t know how to modem-port in startup ThismessageintheMicroworldscom-
mand center generally meansthat Microworldsdid not not load the -TooLs-
file properly.
In order for Microworlds to load this file, make sure that either or both of
the following methods s used:

e Put the-TooLs- filein the same folder asthe BRICK LOGO project file,
and start Microworlds by double-clicking on the BRICK LOGO project
(or anadiasof it).

e Putthe-TooLs- filein the samefolder asthe Microworldsapplication,
and start Microworlds by double-clicking on the application itself.

something undefined . . . so no download Thismessageoccursafter you haveclicked
“download” if Brick Logo cannot figure out the procedure definition of some-
thing. Check the procedure buffer and the menu items to make sure there
are no typing mistakes; if the error persiststhereis probably a problem with
invisible charactersin the buffers. See solutionin Appendix G.

56

Out of space This message will sometime appear after switching between the
BRICK LOGO and LOADBRICK projects. The solution is smply to quit Mi-
croworldsand restart.

If the error persists, or occurs when attempting to download a Brick Logo
program, check for the following:

e Make sure Microworlds has a big enough memory partition. It may be
necessary to allocate three megabytes. Increasing it beyond thiswon't
help, however.

e When downloading large Brick Logo programs (one hundred lines or
more), it is necessary to patch Microworldsto give it more nodespace.
Please use a copy of ResEdit to perform the patch:

1. Open the CODE resources.

2. Open resource number 3.

3. Change thefirst byte from 28 to 40.
4. Close and save changes.

Please find alocal Macintosh expert to perform the patch if you have
never used ResEdit.

57

G Known Bugs

This section lists known bugs with the current brick hardware (Model 120) and
software (Brick Logo 120, Microworlds version, date September 26, 1995).

G.1 Hardware

e Motor portsA through Cwill burnout if drivingashort circuit for amoderate
period of time (i.e., ten seconds or more). Please be extremely careful not
to create a short circuit with the LEGO cables.

e Thereisahardwaredesign error related to motor port D. If motor D drivesa
short circuit, or aload of less than 2 ohms, the drive transistor will burn out.

This shouldn’t be a problem when using stock 9v LEGO motors because
their stall resistance is greater than 2 ohms, so even a stalled motor won't
causethedrivetransistor tofail. Please be careful, though, when using other
motorswith motor D, and be careful not to create a short with the connector
cables.

G.2 Software

e |t ispossible to generate invisible charactersin the Brick Logo procedures
buffer and screen items slots. These invisible characters cause Brick Logo
to generate “xxx undefined ...so no downl oad” error messages.

Find the invisible characters by advancing one letter at a time using the
arrow keys. If you find that you have pressed the forward arrow, but the
cursor doesn't advance, you have just spaced over an invisible character.
Press backspace to delete it.

58

H Version History

H.1 Hardware

The current Brick model, referred to as Model 120, contains numerous small
improvements from the earlier verson, Model 100. The Model 100 Brick was
developed during early summer 1994 and used from August through December
1994. The Model 120 Brick wasdeveloped during thefall of 1994, wasintroduced
in January 1995, and is currently in active use.

Changes from Model 100 to Model 120 include:

Plastic Cover. TheModel 100 Brick did not have aplastic cover—theelectronic
“guts’ of the Brick were exposed for users to admire. We decided, though,
that an enclosed Brick would be more friendly to users, “pocketable,” and
generally more robust.

Better Connectors. TheModel 100 used four metal screw-headsto attach tothe
LEGO connectors. Unfortunately the screws were not held tightly enough
in the printed circuit board, and performed rather poorly. The Model 120
uses real LEGO connectors.

Better Motor Outputs. The 100 had two “full power” motor outputs and two
“half power” motor outputs(all bi-directional). The 120 hasthreefull power,
bi-directional outputs and one full power uni-directional output. While the
120 has one fewer bi-directional motor output, we consider the inclusion of
all full-powered outputs to be an improvement.

Short Circuit Protection. The Model 100 Brick would die if two of them
were plugged together. The Model 120 includes a fuse to protect against
this circumstance.

Improved Infrared Capability. Port D of theModel 120 Brick includesahard-
ware oscillator to generate the infrared carrier frequencies, aswell as higher
current drive capability.

Better Switches and Knob. The buttons and knob on the Model 120 Brick
are higher-quality and more accessible.

59

H.2 Software
September 26, 1995 version

New features:
e randomprimitive added.

April 6, 1995 version

Bug fixes:

e i rsend primitive now works correctly. Previoudly it transmitted the
character out motor port C; it now uses port D.

March 23, 1995 version

New features;

e i rf primitiveto return infrared values detected on an infrared sensor
plugged into sensor F.

Changes:

e i r primitivereturnsavalue evenif it istrapped by menu handler (e.g.,
the“1” key which triggersmenu item 1). Also, low-level IR codes are
no longer trandated in any fashion, so the “1” key returns 128 rather
than 1 (for example).

Bug fixes:

e Local variableswere badly broken.

e Thelist object would break if it was longer than 256 bytes. This bug
would be exercised, for example, in an unusually long procedure.

e The phase and st opphase primitives were removed. The primi-
tives were broken, having been left in place after being superceded by
st opr ul es inan earlier version.

60

| Bibliography

This bibliography presents a sampling of works that contain ideas that influenced
the Programmable Brick, and may serve to inspire projectsthat use it.

¢ \khicles, Valentino Braitenberg
e The 6.270 Robot Builder’s Guide, Martin

e Circuits to Control: Learning Engineering by Designing LEGO Robots,
Martin

e Mindstorms, Papert
e Twenty Thingsto Do with a Computer, Papert and Solomon
e Xylophones, Hamsters, and Fireworks, Resnick

e Behavior Construction Kits, Resnick

61

J Suppliers

This appendix lists contact information for recommended suppliers of materials
useful for Programmable Brick projects. Included are: retail electronics compa-
nies; surplus electronics companies, LEGO Dacta; and Logo Computer Systems,
Inc.

All Electronics All Electronics is a top-notch surplus electronics company.
They haveawideranging assortment of materialsuseful for roboticsprojects,
including switches, motors, sensors, connectors, and wire. Their catalog is
well-organized and includes a good supply of basic components.

All Electronics has a minimum order of $15, and charges a flat $4 fee
for UPS Ground shipping (unless the order is exceptionally heavy). They
generaly pack and ship and order within two days of receiving it. Faster
delivery options are available, but are expensive (e.g., $12 to ship a small
parcel via UPS Blue two-day service).

Digi-Key Corporation
701 Brooks Ave. South ¢ P.O. Box 677
Thief River Falls, MN 56701-0677
orders and info: (800) DIGI-KEY
fax: (218) 681-3380

Digi-Key istheundisputed |eader inthemail-order retail electronicsindustry.
Their extensive catalog, superb service, and willingness to deal with small
orders (aswell as large ones) are unmatched.

Get the Digi-Key catalog and use it for basic supplies, switches, optical
devices, chips, cases, and connectors. Pricesare competitive with any retail
dedler.

Terms. $5 handling charge for orders under $25; MC/VISA, check, money
order or COD; customer pays shipping on credit card and PO orders. In-
creasing volume discounts for orders over $100.

The Electronics Goldmine
POB 5408 e Scottsdale, AZ 85261
orders and info: (602) 451-7454
fax: (602) 451-9495

62

Unusual catalog comprised mostly of packaged electronic kits, with asmall
amount of very good surplus stock mixed in. A good source of parts for
building sensors.

Terms. $10 minimum order; MC/VISA accepted; minimum $3.50 for UPS
shipping.

LEGO Dacta
555 Taylor Road e Enfield, CT 06082
orders and info: (800) 527-8339 or (800) 243-4870

LEGO Dacta is the branch of the LEGO company that is responsible for
educational sales (as distinct from retail toy sales). Dacta packages LEGO
Technic sets for classroom use, including lesson plans and other support
materials.

Call Dacta and get their “Gear Up for Learning” catalog, which has many
LEGO Technicskits.

Logo Computer Systems, Inc.
(800) 321-LOGO

Logo Computer Systems, Inc. (LCSl) is the world’s largest supplier of
Logo software for educational use. Their latest version of Logo, called
Logo Microworlds, includes features such as multi-tasking Logo program
execution, dynamic creation of up to dozens of turtles, color paint tools, and
user interface objects like buttons, diders, and text windows. Microworlds
isavailable for both the Macintosh and MS-DOS computer platforms.

Marlin P. Jones and Associates
P.O. Box 12685 e Lake Park, FL 33403-0685
orders and info: (407) 848-8236
fax: (407) 844-8764

Another good company for robotic surplus: motors, transformers, lots of
relays, switches, optical stuff, power supplies, rechargeable batteries.

Terms: $1 handling charge for orders under $10; MC/VISA accepted; ship-
ping charges are UPS rates.

MCM Electronics
650 Congress Park Drive o Centerville, Ohio 45459-4072

63

orders and info: (800) 543-4330
fax: (513) 434-6959

MCM is a low-priced leader for basic to high quality tools, electronics
building supplies, and other genera-purpose materias (e.g., solder, tape,
glue, etc). They speciaize in hard-to-find partsfor VCR servicing, but their
catalog is a must-have for anyone setting up a small electronics lab on a
budget because of their excellent assortment, reliable service, and heavily
discounted prices.

Terms: MCM is a retail company. $25 minimum for credit card orders;
MC/VISA accepted; shipping charges are UPS rates plus $2.10 handling
charge.

Radio Shack
National electronics chain; check yellow pages.

Radio Shack is the ubiquitous chain electronics parts store. Few localities
would have a shop that could compete with Radio Shack’s selection of
in-store stock.

For Programmable Brick-related projects, the *Shack can be mined to
find: a variety of sensor parts (including switches, photocells, and mer-
cury switches), hand tools, connectors, and wire.

Radio Shack is not known for lowball prices, but their selection and conve-
nience more than make up for sometimes-a-little-high pricing.

RC Systems, Inc.
1609 England Avenue e Everett, WA 98203
phone: (206) 355-3800
fax: (206) 355-1098

RC Systems sdlls a custom text-to-speech board for voice output applica-
tions. It can be easily modified to work with the Programmable Brick. The
board sells for about $150 in single quantities.

